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Abstract.—During 25 field seasons between 1988 and 2012, Biodiversity Research Institute captured and 
uniquely color-banded 2,730 adult Common Loons (Gavia immer) on breeding territories in 11 States and seven 
Provinces throughout North America. Body mass was obtained from each individual; tarsus and bill measurements 
were obtained from more than half the birds banded. Clinal variation in body mass, tarsal width and bill length was 
observed. Body mass varied from 2,700 g to 7,600 g; loons from populations in the upper Great Lakes and central 
Canada were smallest, and size increased to the east and west. Examination of band return and satellite tracking 
data resulted in three migration distance groups: < 1,500 km; 1,500-3,500 km; and ≥ 3,500 km. Body mass was 
inversely related to migration distance. Males were significantly larger (> 20%) than associated females, and within-
pair differences increased with decreasing migration distance (i.e., males from coastal States were proportionally 
larger than their mates compared to interior State pairs). Received 26 February 2013, accepted 18 June 2013.
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Intraspecific variation of morphological 
features in birds has been observed across 
geographic ranges (Ainley 1980; McGilli-
vray 1989; Leafloor and Rusch 1997; Ashton 
2002). The trend for body size to be larger 
in cooler climates and smaller in warmer 
climates (often represented by latitude) is 
known as Bergmann’s rule when it occurs 
among closely related species or James’s rule 
when it occurs within species (James 1970; 
Blackburn et al. 1999). The basis is that larg-
er body size will be favored in cool climates 
because lower surface area to mass ratios re-
sult in reduced heat loss and, thus, apparent 
increased survival. There is strong evidence 
for similar variation within species; howev-
er, many exceptions to the rule have been 
observed, particularly among migratory vs. 
sedentary species (James 1970; Blackburn 
et al. 1999; Ashton 2002; Meiri and Dayan 
2003). In birds, this may be attributed to a 
decreased load-carrying capacity of an indi-
vidual associated with increased body mass 
(Hedenström and Alerstam 1992, 1997). 
Further, migration speed is diminished with 
increased body size for birds that use flap-
ping flight, resulting in increased migration 
times and, thereby, constraining the migra-

tion distances that larger-sized birds are 
capable of completing during their annual 
life cycle (Hedenström and Alerstam 1998; 
Alerstam et al. 2003; Hedenström 2003; Hein 
et al. 2012). For example, among three spe-
cies of European swans, the smallest species 
(Cygnus bewickii) had the longest migration 
distance, the largest species (C. olor) the 
shortest distance, and the mid-sized species 
(C. columbianus) an intermediate distance 
between the smallest and largest species 
(Cramp and Simmons 1977). This pattern 
has also been observed in Atlantic alcids 
such as Thick-billed Murre (Uria lomvia; Vau-
rie 1965), Atlantic Puffin (Fratercula arctica; 
Moen 1991), Razorbill (Alca torda; Barrett et 
al. 1997) and Dovekie (Alle alle; Wojczulanis-
Jakubas et al. 2011).

Loons are a small monophyletic group 
(Gaviiformes) consisting of five species 
worldwide (Sibley and Ahlquist 1990; Lind-
say 2002; Evers et al. 2010). They are heavy-
bodied piscivorous birds known as divers in 
the Old World due to their foot-propelled 
diving foraging strategy. Loons are a classic 
K-selected species with long life expectancy, 
delayed sexual maturity, and low fecundity; 
their mating system is socially and geneti-
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cally monogamous (Piper et al. 1997). The 
Common Loon (Gavia immer) has the larg-
est geographic range of the loon species 
in North America and is the only one that 
breeds in the contiguous USA (Sibley and 
Ahlquist 1990; Lindsay 2002), which makes it 
a good candidate to examine within-species 
variation. The annual life cycle of the Com-
mon Loon varies little across its broad geo-
graphical range in that it breeds on fresh-
water lakes throughout the northern USA, 
including Alaska, and Canada north to the 
southern edge of the taiga shield, and mi-
grates to coastal areas in the fall, including 
the Atlantic and Pacific Coasts, Gulf of Mex-
ico, and Gulf of California. Satellite tracking 
data indicate that the duration of migration 
and the timing of arrival on the wintering 
grounds appear to vary within and among 
populations (U.S. Geological Survey 2013; 
Biodiversity Research Institute, unpubl. 
data). These differences among populations 
seem to be associated with differences in mi-
gration distance. For example, northeastern 
USA Common Loon populations typically 
arrive in coastal wintering areas within a day 
of departure from breeding areas, whereas 
upper midwestern USA Common Loon pop-
ulations that travel up to seven times the dis-
tance of northeastern USA Common Loons 
may take up to a few weeks to complete 
their fall migration (U.S. Geological Survey 
2013). Less information is available regard-
ing migration timing of Common Loon pop-
ulations in interior Canada. However, lim-
ited satellite tracking data suggest that they 
travel the greatest migration distances of all 
North American Common Loons and may 
take up to 2 months to complete their fall 
migrations (Confederated Salish and Koote-
nai Tribes 2008; Paruk et al. 2014).

A geographic cline in the body size of the 
Common Loon (loons) has been observed 
across its North American range and appears 
to coincide with the differences in migration 
distance, where interior breeding loons are 
smallest and size increases to the east and 
west (Rand 1947; Storer 1988; Evers et al. 
2010). The increased physiological cost of a 
larger body size during migration may create 
a selection pressure that favors smaller body 

sizes for loons with long migration distances. 
However, an opposing selection pressure 
for large body size may exist for loons that 
migrate shorter distances. A central char-
acteristic on which several life history traits 
may depend is individual body size, includ-
ing survival and fecundity (Boag and Grant 
1981; Alisauskas 1987; Promislov and Harvey 
1990; Sedinger et al. 1995). Loons are highly 
territorial during the breeding season, and 
competition for quality breeding territories 
often results in aggressive interactions be-
tween individuals and pairs (Paruk 1999; Pip-
er et al. 2008; Piper 2011). Piper et al. (2000) 
found that larger-sized loons were less likely 
to be usurped from their territories dur-
ing these interactions compared to smaller 
loons. Loons are also highly vocal during 
the breeding season and produce an array 
of calls, the yodel being the most complex 
and used solely by males often in response 
to territorial intrusions. Mager et al. (2007a) 
confirmed that variability in the dominant 
frequency of a male’s yodel is influenced by 
body size, with larger males producing lower 
frequency yodels. Further, loons appeared 
to respond with more alarm to lower pitch 
yodels compared to higher pitched yodels 
during callback surveys (Mager et al. 2007b).

Over a 25-year period (1988-2012), the 
Biodiversity Research Institute, with the 
help of multiple collaborators, banded 2,730 
adult Common Loons on their breeding 
territories in 11 States and seven Provinces 
throughout the species’ range in North 
America. Of those individuals, 536 breed-
ing pairs were sampled (i.e., the male and 
female of a territorial pair were captured 
and banded within the same breeding sea-
son). These significant banding efforts have 
resulted in the largest known collection of 
morphological data on Common Loons. 
We analyzed these data in an effort to deter-
mine if body size features, such as body mass, 
tarsus width, and bill length, are linked to 
differences in migration distance. We pre-
dicted that loon populations inhabiting the 
interior part of the continent with ostensibly 
longer migration distances will have smaller 
morphological features than coastal ones 
with much shorter migrations. We were also 



66 waterbirDs

interested in how size differences between 
pair members changed, if at all, across their 
range. If being larger is more important for 
a male than a female to defend and hold its 
territory, then selection should favor larger 
males relative to females when the distance 
between breeding and wintering areas is de-
creased. Our prediction was that size differ-
ence between pair members would increase 
as migration distance decreased.

methoDs

Study Area

During the breeding season (June-August) from 
1988 to 2012, Common Loons were targeted for cap-
ture and banding efforts in their breeding territories 
on freshwater lakes and ponds in the following States 
and Provinces: Alaska, Alberta, Maine, Manitoba, Mas-
sachusetts, Michigan, Minnesota, Montana, New Bruns-
wick, New Hampshire, New York, Nova Scotia, Ontario, 
Quebec, Saskatchewan, Vermont, Washington, and Wis-
consin.

Capture and Measurements

Adult loons were captured on their breeding lakes 
with a replicable night-lighting technique (Evers 1993, 
2001). Spotlights (400,000 to 1.5 million candle power) 
were used to search lakes, and tape-recorded and mim-
icked calls were used to attract loons to the boat where 

they were netted with large landing nets, restrained, 
and transported to shore. All loons were marked with 
U.S. Geological Survey aluminum or stainless steel 
bands, and a unique plastic, colored leg band combina-
tion glued with an acetone-based derivative. The follow-
ing measurements were also taken using a standardized 
protocol developed by Evers (2001): bill length, width 
and depth; culmen; right and left tarsal width; and body 
mass. Males were distinguished from females based on 
yodel calls given before and/or after capture. In some 
cases gender was determined by placing several drops 
of blood on a cotton pad, which was sent to a genetics 
lab for analysis. Sexing was accomplished by amplifying 
a portion of the W-linked EE0.6 sequence and a control 
sequence from the spindlin gene on the Z chromosome 
with PCR (polymerase chain reaction). Female birds 
showed two bands on an agarose gel (~150 and 300 
base pairs; the Z and W fragments, respectively) and 
male birds had a single band (~150 base pairs; the Z 
fragment) (Itoh et al. 2001).

Migration Distance Categories

Migration distances between breeding and winter-
ing grounds were determined from wintering band 
return and satellite tracking data (Table 1). Only 
Common Loons banded on breeding territories and 
recovered outside of the breeding area during the pe-
riod when loons are expected to be on the wintering 
grounds and not in migration (i.e., December, Janu-
ary, and February) were included in the development 
of the migration distance categories. Although loons 
may be found in wintering locations outside of these 
months, it was necessary to be conservative in the selec-

Table 1. Migration distance (km) from breeding to wintering areas of Common Loons in North America deter-
mined from band recoveries and satellite tracking data. BRI = Biodiversity Research Institute.

Population

Migration Distance Traveled (km)

                           Data Source n Mean ± SD Range

Band Recoveries
Maine 12 450 ± 223  190-950 BRI Banding Records
Michigan 5 2,660 ± 344 2,200-3,000 BRI Banding Records
Minnesota 4 2,869 ± 415 2,600-3,475 BRI Banding Records
Montana 3 1,967 ± 153 1,800-2,100 BRI Banding Records
New Hampshire 8 284 ± 103  175-500 BRI Banding Records
New York 3 800 ± 368  575-1,225 BRI Banding Records
Quebec 4 1,931 ± 383 1,600-2,475 BRI Banding Records
Washington 3 275 ± 150  125-425 BRI Banding Records
Wisconsin 11 2,550 ± 299 2,200-2,950 BRI Banding Records

Satellite Tracking

Alberta 1  4,700 4,700 Confederated Salish and Kootenai Tribes 2008
Alaska 2 286 ± 10  279-293 J. Schmutz, pers. commun.
Maine 7 498 ± 313  172-1,050 BRI, unpubl. data; Kenow et al. 2009
Minnesota and Wisconsin 4 — 1,884-2,121 Kenow et al. 2002
New Hampshire 2 154 ± 3  152-156 Kenow et al. 2009
New York 5 430 ± 60  362-527 Kenow et al. 2009
Saskatchewan 3 4,005 ± 451 3,694-4,522 Confederated Salish and Kootenai Tribes 2008; 

Paruk et al. 2014
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tion of recovery data to avoid inclusion of loons recov-
ered during migration in locales that did not represent 
full migration distances between breeding and winter-
ing areas. Straight-line distances between breeding 
territory locations and winter recovery locations were 
measured in ArcGIS (Environmental Systems Research 
Institute 2011). The same method was used to measure 
the distance between breeding and winter locations for 
the Biodiversity Research Institute’s unpublished satel-
lite tracking data. Distances were also obtained from 
colleagues with unpublished satellite tracking data 
through personal communication and from the peer-
reviewed literature (Confederated Salish and Kootenai 
Tribes 2008; U.S. Geological Survey 2013; Paruk et al. 
2014; J. Schmutz, pers. commun.). Three broad migra-
tion distance groups were developed based on these 
data: short-distance (< 1,500 km), moderate-distance 
(1,500-3,499 km), and long-distance (≥ 3,500 km). The 
short-distance migration category included Common 
Loons sampled in Alaska, Maine, Massachusetts, New 
Brunswick, New Hampshire, New York, Nova Scotia, 
Vermont, and Washington. The moderate-distance mi-
gration category included loons sampled in Michigan, 
Minnesota, Montana, Ontario, Quebec, and Wisconsin. 
The long-distance category included loons sampled in 
Alberta, Manitoba, and Saskatchewan. Loons banded in 
States or Provinces without band recovery or satellite 
tracking data, including Manitoba, Massachusetts, New 
Brunswick, Nova Scotia, Ontario, and Vermont, were as-
signed to a migration distance category based on their 
geographic location relative to nearby populations with 
known wintering locations.

Statistical Analysis

Statistical analyses were performed in Microsoft EX-
CEL and JMP (SAS Institute, Inc. 2010). Banding records 
of adult male (n = 1,419) and female (n = 1,311) Common 
Loons sampled on breeding territories as part of research 
conducted by the Biodiversity Research Institute between 
1988 and 2012 were evaluated for differences in body 
mass, tarsus width, and bill length. Normality of sample 
distributions was checked with the Shapiro-Wilk test, and 
homogeneity of variance was examined with the Bartlett 
test. We examined the effects of latitude of breeding loca-
tion, longitude of breeding location, the compound effect 
of latitude and longitude of breeding location (latitude 
x longitude), and migration distance category on body 
mass using a general linear model (GLM) framework. 
Candidate models of suites of covariates were ranked with 
Akaike Information Criterion adjusted for small sample 
size (AICc). The model with the lowest AICc and those 
having ΔAICc ≤ 2 had the most statistical support, values 
between 4 and 7 had considerably less support, and those 
> 10 had virtually no support (Burnham and Anderson 
2002). The Akaike weight was also considered when deter-
mining the relative amount of statistical support for each 
model. The relationship between body mass and tarsus 
width and body mass and bill length were determined with 
simple linear regression. Differences in tarsus width and 
bill length among migration distance categories were ex-
amined with analysis of variance (ANOVA). Pairwise com-

parisons between categories were conducted with Tukey’s 
honestly significant difference (HSD) test. All tests were 
considered significant at P < 0.05.

The relationship between male and female body 
mass within breeding pairs was examined with linear re-
gression for short-distance migrant breeding pairs (n = 
415) and moderate-distance migrant breeding pairs (n 
= 138). The variation in body mass, tarsus width, and bill 
length between a male and female of a breeding pair 
were tested for differences between short-distance and 
moderate-distance migrant breeding pairs using Stu-
dent’s t-test. Small sample size precluded inclusion of the 
long-distance category in the breeding pair analyses.

resuLts

Body Mass

Body mass ranged from 2,700 g to 6,200 
g in females (n = 1,311) and from 4,350 g to 
7,600 g in males (n = 1,419). The top sup-
ported model included longitude, latitude, 
longitude x latitude, and migration distance 
for males and females, although migration 
distance accounted for the greatest variation 
in body mass (Table 2). Body mass decreased 
with increased migration distance in males 
and females (Fig. 1). Tukey’s HSD tests indi-
cated that female short-distance migrant least 
squares mean (LSM) body mass [x    –  = 4,505 g 
(SE = 23)] was significantly greater than fe-
male moderate-distance migrants [x    – = 3,719 
g (SE = 20)] (P < 0.001), and both of those 
groups were significantly greater than female 
long-distance migrants [x    –  = 3,430 g (SE = 
74)] (short to long: P < 0.001; moderate to 
long: P < 0.001). Similarly, LSM body mass 
of male short-distance migrants [x    –  = 5,727 g 
(SE = 27)] was significantly greater than male 
moderate-distance migrants [x    –  = 4,661 g (SE 
= 21)] (P < 0.001), and both of these groups 
were greater than long-distance migrants [ x    –  
= 4,244 g (SE = 84)] (short to long: P < 0.001; 
moderate to long: P < 0.001). Among State 
and Province populations, male and female 
Common Loons in Maine and New Hamp-
shire had the greatest arithmetic mean body 
masses compared to loons sampled in any 
other States or Provinces (Appendix).

Tarsal width ranged from 20.0 mm to 
28.6 mm in females and 21.1 mm to 30.8 
mm in males. Right tarsal width was mod-
erately correlated with body mass (females: 
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r2 = 0.29, F681 = 275.39, P < 0.001; males: r2 

= 0.34, F723 = 375.27, P < 0.001). ANOVA 
results indicated significant differences in 
tarsal width among the migration distance 
categories for both sexes (females: F702 = 
105.21, P < 0.001; males: F748 = 201.10, P < 
0.001) (Fig. 2). Pairwise comparisons with 
Tukey’s HSD test showed that short-distance 
migrants [females: = 24.86 mm (SE = 0.05), 
n = 536; males: = 26.87 mm (SE = 0.05), n 
= 558] had greater tarsal widths than mod-
erate-distance migrants [females: x    –  = 23.46 
mm (SE = 0.11), n = 131, P < 0.001; males: x    –  
= 24.86 mm (SE = 0.11), n = 153, P < 0.001]; 
both of these groups were greater than the 
long-distance migrants [females: x    –  = 22.68 
mm (SE = 0.21), n = 36; short to long: P < 
0.001; moderate to long: P = 0.003] [males: 
x    –  = 24.12 mm (SE = 0.21), n = 38; short to 
long: P < 0.001; moderate to long: P = 0.005]. 
Among State and Province populations, the 
largest tarsal widths were observed in Alaska 
(Appendix).

Table 2. Model selection results examining the effects of migration distance category (MD), latitude of breeding 
location (Lat), longitude of breeding location (Long), and the compound effect of latitude and longitude of breed-
ing location (Lat*Long) on the body mass of female (n = 1,311) and male (n = 1,419) Common Loons sampled 
across their North American breeding range from 1988 to 2012. Models are ranked according to Akaike Informa-
tion Criterion adjusted for small sample size (AICc). The table shows the variables included in the model, number 
of estimated parameters (K), differences between model Akaike Information Criterion adjusted for small samples 
size (ΔAICc), AICc weights (wi), and the amount of variation explained by the model (r2).

Model K ΔAICc wi r2

Females
MD1+Lat2+Long3+Lat*Long4 5 0.000 0.909 0.66
MD + Lat + Long 4 5.552 0.057 0.66
MD + Long 3 6.559 0.034 0.66
MD + Lat 3 19.284 0.000 0.65
MD 2 167.335 0.000 0.65
Lat*Long 3 386.360 0.000 0.54
Lat+Long 2 962.297 0.000 0.29
Long 1 1,007.851 0.000 0.26
Lat 1 1,221.432 0.000 0.13
Males

MD+Lat+Long+Lat*Long 5 0.000 0.999 0.74
MD + Lat + Long 4 14.443 0.001 0.74
MD + Long 3 20.443 0.000 0.73
MD + Lat 3 49.510 0.000 0.73
MD 2 177.257 0.000 0.73
Lat*Long 3 529.061 0.000 0.62
Lat+Long 2 1,308.043 0.000 0.34
Long 1 1,350.686 0.000 0.32
Lat 1 1,638.399 0.000 0.16

Figure 1. Differences in body mass (g) among short 
(< 1,500 km), moderate (1,500-3,499 km), and long (≥ 
3,500 km) distance migration categories for male and 
female Common Loons banded on breeding territories 
in Canada and the United States, 1988 to 2012. Box-
and-whisker plots represent median, interquartile range, 
overall range, and outlier values of body mass (g). Short-
distance migrants: females: n = 791, males: n = 813; mod-
erate-distance migrants: females: n = 489, males: n = 572; 
long-distance migrants: females: n = 31, males: n = 34.
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Bill length ranged from 63.5 mm to 97.5 
mm in females and 72.0 mm to 100.1 mm in 
males. Bill length was weakly correlated with 
body mass in both sexes (females: r2 = 0.20, 
F737 = 182.97, P < 0.001; males: r2 = 0.10, F758 = 
86.77, P < 0.001). ANOVA results indicated 
that significant differences in bill length 
were observed among the distance migra-
tion categories for both sexes (females: F757 
= 90.45, P < 0.001; males: F790 = 70.06, P < 
0.001) (Fig. 3). Pairwise comparisons with 
Tukey’s HSD test showed that the bill length 
of short-distance migrants [females: = 84.01 
mm (SE = 0.19), n = 593; males: = 88.13 
mm (SE = 0.18), n = 600] was greater than 
the moderate-distance migrants [females: = 
80.78 mm (SE = 0.41), n = 133, P < 0.001; 
males: = 85.86 mm (SE = 0.36), n = 155, P 
< 0.001]. Both of those groups had greater 
bill lengths than the long-distance migrants 
[females: x    –  = 73.72 mm (SE = 0.83), n = 32, 
P < 0.001; males: x    –  = 79.81 mm (SE = 0.74), 
n = 36; short to long: P < 0.001; moderate to 
long: P < 0.001]. Among State and Province 
populations, the longest bill lengths were 
observed in Massachusetts (Appendix).

Breeding Pairs

Minimal correlation was detected be-
tween female body mass and the body mass 
of its male mate among short-distance mi-
grant pairs (r2 = 0.07, F414 = 32.29, P < 0.001). 
However, a slightly stronger correlation was 
noted within pairs in the moderate-distance 
migrant category (r2 = 0.20, F137 = 33.36, P 
< 0.001). Small sample size precluded the 
regression analysis of body mass for breed-
ing pairs in the long-distance migration cat-
egory. Male loons invariably weighed more 
than their female mates, and the difference 
increased with decreased migration distance 
(Fig. 4). Male short-distance migrants aver-
aged 25% more in body mass [x    –  = 1,293 g 
(SE = 22), n = 415] than their female mates. 
In comparison, male moderate-distance 
migrants averaged 21% more in body mass 
[x    –  = 875 g (SE = 38), n = 138] than their fe-
male mates, which was significantly less than 
the body mass difference observed within 
short-distance migrant pairs (t551 = -10.46, P 
< 0.001).

Tarsal diameter showed a similar pat-
tern as body mass; the tarsus of male short-

Figure 2. Differences in tarsus width (mm) among short 
(< 1,500 km), moderate (1,500-3,499 km), and long 
(≥ 3,500 km) distance migration categories for male 
and female Common Loons banded on breeding ter-
ritories in Canada and the United States, 1997 to 2012. 
Box-and-whisker plots represent median, interquartile 
range, overall range, and outlier values of tarsus width 
(mm). Short-distance migrants: females: n = 536, males: 
n = 558; moderate-distance migrants: females: n = 131, 
males: n = 153; long-distance migrants: females: n = 36, 
males: n = 38.

Figure 3. Differences in bill length (mm) among short 
(< 1,500 km), moderate (1,500-3,499 km), and long 
(≥ 3,500 km) distance migration categories for male 
and female Common Loons banded on breeding ter-
ritories in Canada and the United States, 1997 to 2012. 
Box-and-whisker plots represent median, interquartile 
range, overall range, and outlier values of bill length 
(mm). Short-distance migrants: females: n = 593, males: 
n = 600; moderate-distance migrants: females: n = 133, 
males: n = 155; long-distance migrants: females: n = 32, 
males: n = 36.
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distance migrants was = 2.1 mm (SE = 0.14; 
n = 139) larger than their female mates, 
which was greater than the tarsus width dif-
ference observed within moderate-distance 
migrant pairs [x    – = 1.37 mm (SE = 0.24), n = 
43] (t180 = -2.43, P = 0.02) (Fig. 5). The bills 
of male short-distance migrants were = 4.69 
mm (SE = 0.49; n = 122) larger than their 
female mates and the bills of male moderate-
distance migrants were x    –  = 4.14 mm (SE = 
0.82; n = 43) greater in size than their mates 
(Fig. 5). No significant differences in male 
and female bill length were detected in ei-

ther group. Small sample size precluded the 
comparison of tarsus widths and bill lengths 
for breeding pairs in the long-distance mi-
gration category.

DisCussion

Body masses of Common Loons varied by 
approximately two to threefold across their 
breeding range with females ranging from 
2,700 g to 6,200 g and males ranging from 
3,250 g to 7,600 g. The heaviest males were 
larger than Yellow-billed Loons (G. adamsii) 
reported to date (Evers et al. 2010, 2014), 
which were once considered as being the 
largest of all the loon species (North 1994). 
The body of the loon is streamlined to re-
duce drag while pursuing prey underwater, 
and this is further achieved by holding the 
wings very close to the body while swimming 
(Barr 1973). Consequently, loon wings are 
very narrow, 20 percent shorter than pre-
dicted for a bird of its size, and heavily cam-
bered (McIntyre 1988). The resultant trade-
off is one of the highest wing-loading ratios 
of any breeding bird in North America (2.45 
g/m2), which requires a runway of approxi-
mately 200 m to achieve lift (Poole 1938; 
Welty and Baptista 1988). Once airborne, 
loons beat their wings rapidly (~240 times/
min; Evers et al. 2010) and fly 112-129 kph 
to keep their bodies aloft (Kerlinger 1982). 
Thus, the physiological cost of transport for 
loons is high (Hill et al. 2008), and the fit-
ness benefits associated with optimal time 
management in migratory species (Alerstam 
and Lindström 1990) would likely favor a 
small body size for loons that perform long-
distance migrations.

The heaviest loons recorded were from 
Maine and New Hampshire, which winter 
within the Gulf of Maine south to Long Is-
land Sound—a distance of less than 500 
km. In contrast, significantly smaller loons 
breeding in the upper Great Lakes region 
winter in the Gulf of Mexico—a distance of 
greater than 1,500 km. Satellite movement 
data of Common Loon migration indicate 
that northeastern USA loons can arrive at 
their wintering locations in 1 day, whereas 

Figure 4. Mean plus standard error difference in body 
mass (g) between male and female Common Loons of a 
breeding pair according to migration distance category. 
Short-distance migration (< 1,500 km): n = 415; moder-
ate-distance migration (1,500-3,499 km): n = 138.

Figure 5. Mean plus standard error difference in right 
tarsus diameter (mm) and bill length (mm) between 
male and female Common Loons of a breeding pair ac-
cording to migration distance category. Short-distance 
migration (< 1,500 km): tarsus diameter (n = 127), bill 
length (n = 116). Moderate-distance migration (1,500-
3,499 km): tarsus diameter (n = 44), bill length (n = 51).
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interior loons have a protracted migration 
of 4 to 10 weeks (Kenow et al. 2002, 2009; 
Paruk et al. 2014; Biodiversity Research Insti-
tute, unpubl. data). The geographical gradi-
ent in body size revealed by our data (i.e., 
interior breeding populations in the upper 
Great Lakes region and central Canada are 
smallest in size and increase to the east and 
west) supports the model that small body 
size is favored over large body size in birds 
using flapping flight for long-distance mi-
grations (Hein et al. 2012). It also supports 
our original prediction that body size in 
Common Loons is inversely related to mi-
gration distance between breeding and win-
tering areas. Similar variation in body size 
has been observed in Canada Geese (Branta 
canadensis), a species with 11 recognized 
subspecies (Mowbray et al. 2002). However, 
despite great differences in body size among 
Common Loons, the geographic variation 
was clinal and the designation of subspecies 
originally proposed by Bishop (1921) for 
smaller individuals in central North America 
is not recommended.

Although many bird species have been 
shown to adhere to Bergmann’s and James’s 
Rules (James 1970; Ashton 2002; Meiri and 
Dayan 2003), no strong support for a rela-
tionship between body size and latitude, and 
therefore temperature, was found in Com-
mon Loons. For example, breeding loons 
in Alaska were larger than those in the in-
terior of the continent; however, they were 
not larger than breeding loons in the north-
eastern USA. It is expected that endotherms 
with larger body sizes are favored in cooler 
environments due to a decreased surface 
area to volume ratio, which serves to mini-
mize heat loss. However, studies have shown 
that feather mass and structure are perhaps 
more important than body size with regard 
to thermoregulation in birds (Scholander 
1955; Geist 1987). It has also been proposed 
that larger body size is favored in more sea-
sonal environments because larger animals 
can store more fat and can use those stores 
for greater survival during seasonal stress 
(Boyce 1979; Lindstet and Boyce 1985). 
Common Loons migrate in stages (Kenow 
et al. 2002, 2009; Paruk et al. 2014), which 

allows them to replenish fat stores along 
their route, and so are likely not in need of 
greater fasting endurance during seasonal 
resource shortages.

Male loons were typically 22% heavier 
than females in all migration categories. 
Similarly, male diving seabirds may be up 
to 25% larger than females and it has been 
noted that they feed on larger prey items 
and have different nitrogen isotopic signa-
tures (Croxall 1995; Bearhop et al. 2000, 
2006; Forero et al. 2002, 2005). Barr (1973) 
examined the digestive system of Common 
Loons and concluded that males likely feed 
on larger fish than females. Furthermore, 
our data have shown that male loons have 
larger bills than females, which supports the 
belief of trophic segregation between the 
sexes in Common Loons. Another potential 
factor favoring size differences in loons is 
that males engage in aggressive intra-sexual 
contests for territories that can potentially 
result in fatalities, whereas females do not 
engage in such contests as often (Piper et al. 
2008; Piper 2011). Piper et al. (2000) found 
that 40% of loon territory changes between 
years were due to usurpation by intruder 
loons. Body size, muscle mass and strength 
are intercorrelated in many animals (Le 
Boeuf 1974; Whitham 1979; Dodson 1997; 
Zeh 1997), and large body size is gener-
ally associated with an advantage in fighting 
ability among a broad spectrum of animals 
(Andersson 1994). If larger males are more 
likely than smaller males to retain territo-
ries and/or mates, then selection should 
favor larger-sized individuals. However, it is 
unclear at this time if larger females experi-
ence fitness benefits. Among breeding pairs, 
little correlation was detected between male 
body size and that of its female mate. The 
difference in body size was less pronounced 
in pairs that migrated moderate distances 
compared to short-distance migrant pairs, 
suggesting that males, freed from the ener-
getic and physiological costs associated with 
longer migration, increased in size relative 
to females.

For body size (phenotypic variation) of a 
species to be considered an adaptation, the 
differences must also be genetic (Stillwell 



72 waterbirDs

2010). Limited genetic research has been 
conducted on Common Loons (Dhar et al. 
1997; McMillan et al. 2004); more results will 
be forthcoming (A. Lindsay and A. McMil-
lan, pers. commun.). Barbraud et al. (1999) 
concluded that body size differences in Snow 
Petrels (Pagodroma nivea) across a broad geo-
graphic scale were at least partly attributable 
to genetic variation. Larger-sized petrels as-
sociated with coastal environments made sig-
nificantly shorter foraging trips compared 
to smaller-sized individuals in more interi-
or environments. It was suggested that the 
larger individuals made shorter trips to off-
set the increased energetic costs associated 
with flapping flight for larger-bodied birds. 
Across North America, Common Loons un-
dertake short, moderate, and long-distance 
migrations between their seasonal environ-
ments. Our findings suggest that the body 
size of regional populations is strongly influ-
enced by migration distance. Migration has 
evolved as a strategy to maximize fitness in a 
seasonal environment (Alerstam et al. 2003), 
and, although we did not test for genetic dif-
ferences between our sampling areas, it is 
likely that there is some genetic component 
to body size variation in Common Loons. 
However, we recognize the caveat of making 
adaptive conclusions from phenotypic data 
(Gienapp et al. 2008).

In conclusion, the morphometric data 
collected from multiple Common Loon 
populations across North America indicate 
that short-distance migrants do not have 
the physical constraints of long-distance mi-
grants and, therefore, selection favors larger 
individuals that can more effectively com-
pete for limited high quality breeding terri-
tories. Further research on the heritability of 
body size and other characteristics in loons 
will likely better characterize underlying rea-
sons for geographically based variability in 
Common Loon morphology.
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